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Nomenclature

A = amplitude

Adist = disturbance amplitude

cp = pressure coefficient

cT = coefficient for turbulent timescale

cv = specific heat

δik = Kronecker symbol

∆ = grid line spacing

ε = turbulent dissipation rate

E = total energy E = cvT + 1

2
uiui

fε2 = wall damping function

f(∆/Lk) = contribution function

γ = ratio of specific heats

I = dimensionless injection parameter

k = azimuthal Fourier mode number

kh = total number of azimuthal Fourier modes

K = turbulent kinetic energy

LK = Kolmogorov length scale

µ = dynamic viscosity

µT = turbulent eddy viscosity

M,MT = Mach number, turbulent Mach number

p = pressure

Π = source term

Pr, PrT = Prandtl number, turbulent Prandtl number

Qk = turbulent heat flux

qk = heat-flux vector

Re = Reynolds number
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ρ = density

Sij = strain-rate tensor

σij = subgrid stress-tensor

τik = stress tensor

T = temperature

ui = velocity vector

Wik = vorticity tensor

z, r, θ = streamwise, radial and azimuthal coordinate

φ = Reynolds average of φ

φ̃ = Favre average of φ

Subscripts

D = quantity based on diameter of cylinder

i, j, k = indices for Cartesian tensor notation

T = turbulent

Superscripts

R = resolved

k = kth mode of quantity
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Abstract

At supersonic speed the base drag of blunt axisymmetric bodies can makeup a

substantial fraction of the total drag. A reduction of the base drag is highly desirable

as it would considerably improve aerodynamic performance. We employed computa-

tional fluid dynamics for investigating transitional supersonic axisymmetric wakes at

a freestream Mach number of M = 2.46 and a Reynolds number based on diameter

of ReD = 100, 000. For these simulations, to lower the grid resolution requirement we

employed a hybrid turbulence model, the flow simulation methodology. We investi-

gated flow control mechanisms that alter the near wake by introducing time-periodic

and steady, axisymmetric and longitudinal perturbations into the approach boundary

layer. The objective of our research was to understand how the various active and

passive flow control techniques affect the flow dynamics, in particular the low wave

number azimuthal modes which in our earlier research was found to be primarily re-

sponsible for the low base pressure. We also investigated passive control using steady

basebleed.
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1. Introduction

In supersonic flight of axisymmetric aerodynamic bodies with a blunt base such as

missiles, rockets, and projectiles, the base drag has a considerable effect on the to-

tal aerodynamic drag. A schematic of the mean flow field is shown in Figure 1.1.

The supersonic approach boundary layer (1) separates at the base and undergoes an

expansion (2) with a large turning angle, causing a strong reduction in pressure. A

free shear layer (3) forms, separating the outer inviscid fluid from a large recircula-

tion region (4) downstream of the base. As the free shear layer approaches the axis of

symmetry, a recompression process (5) occurs that realigns the flow with the axis and

subjects the shear layer to a strong adverse pressure gradient. The location where

the mean axial velocity at the axis is zero (6) separates the region of reverse flow

from the trailing wake (7). Depending on the shape and extent of the recirculating

flow region, some pressure may be recovered at the base. However, in general the

base pressure is considerably lower than the stagnation pressure which result in base

drag. In fact, in flight tests with U.S. Army projectiles [1] it was found that the base

drag can be up to 35% of the total drag. Experimental as well as numerical investiga-

tions indicate that by modifying the recirculating flow that develops in the near wake

region, the base pressure and therefore the overall performance of the flight vehicle

can be altered. For this reason, in the past, numerous research efforts, experimental,

1

2

3 5

6
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Figure 1.1 Schematic of mean flow field.
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theoretical, and computational, have focused on understanding the flow physics and

on deriving methods for altering or controlling the near-wake flow dynamics such that

the base pressure increased. The near-wake can be modified by passive techniques

such as basebleed, boat-tailing, base-burning etc. or, unsteady forcing which is re-

ferred to as active flow control. Active flow control that exploits flow instabilities can

potentially be very effective requiring only a minimal control effort.

Sandberg and Fasel [2, 3, 4] employed both, spatial and temporal Direct Numerical

Simulations to study the near-wake region of supersonic axisymmetric wakes at M =

2.46 and Reynolds numbers between 30, 000 and 100, 000. These simulations provided

insight into the hydrodynamic instability mechanisms that lead to the formation of

large coherent structures which were found to decrease the base pressure and then

increase the base drag. The existence of such large coherent structures in supersonic

axisymmetric wakes was confirmed experimentally by Bourdon and Dutton [5, 6]. We

conjectured that by influencing the strength and dynamics of the coherent structures

the base pressure could be affected and thus, ultimately the base drag be reduced. We

also concluded that the key to an effective flow control technique was to understand

and exploit the instability mechanisms that govern the dynamics of the (coherent)

turbulent flow structures.

Sandberg and Fasel [2] concluded that the azimuthal modes k = 1, 2, 3, 4 are

the dominant modes for supersonic axisymmetric wakes. In particular, mode k =

2 is responsible for a “four-lobe” wake structure of the meanflow and significant

entrainment of fluid from the recirculation region, and, consequently, a low base-

pressure. The knowledge gained from these calculations motivated the use of flow

control methods to exploit and/or counteract the instability mechanisms present in

the flow, such that a base pressure increase, and, consequently, a drag reduction could

be accomplished. Direct Numerical Simulations (DNS) performed for M = 2.46 and

ReD = 30, 000 by Sivasubramanian et al. [7] showed that by weakening the dominance

of the low-wavenumber modes, the base pressure could be increased.
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Direct Numerical Simulations of supersonic axisymmetric wakes at Reynolds num-

bers in the order of O(106), as in the experiments at UIUC, with sufficient resolution

in space and time are out of reach even with todays supercomputers. Alternative sim-

ulation approaches for computing such flows have to be considered, such as Reynolds

Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES). Unfortunately,

RANS models often fail to provide accurate results for unsteady separated flows. Be-

cause of its ability to capture three-dimensional unsteady flow structures, LES would

be the method of choice. However at high Reynolds numbers the LES resolution

requirements are still prohibitively high. As an alternative, hybrid methods, which

combine the advantages of DNS, LES, and RANS into one model may be considered.

Supersonic axisymmetric wake simulation with hybrid turbulence models were carried

out by e.g. Forsythe et al., [8] Sandberg & Fasel, [9] and Kawai et al. [10].

For the present investigation of supersonic wakes atM = 2.46 and ReD = 100, 000

a hybrid method, the Flow Simulation Methodology (FSM) was employed. We in-

vestigated how unsteady actuation of the axisymmetric mode and steady forcing of

the higher azimuthal modes affects the base pressure. The former excites the kelvin-

helmholtz instability while the latter introduces steady streamwise vortical structures.

We also investigated the effect of steady basebleed.
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2. Governing Equations

The fluid is assumed to be an ideal gas with constant specific heat coefficients. All

quantities are made dimensionless using the free-stream conditions. The radius of

the body was chosen as reference length. Applying a filter to the governing equations

yields the resolved continuity, momentum, and energy equations as:

∂ρ

∂t
+

∂

∂xk
(ρũk) = 0 , (2.1)

∂

∂t
(ρũi) +

∂

∂xk
[ρũiũk + pδik − (τ ik − ρσik)] = 0 , (2.2)

∂

∂t
(ρER) +

∂

∂xk
[ρũkH + qk +Qk − ũi (τ ik − ρσik)] = Π , (2.3)

The resolved pressure is obtained from the equation of state

p =
ρT̃

γM 2
, (2.4)

with γ = 1.4. The resolved heat flux is computed from

qk = − κ

(γ − 1)M 2PrRe

∂T̃

∂xk
, (2.5)

with Pr = 0.7.

The above equations contain three terms that do not occur in the unfiltered equa-

tions: the subgrid stress tensor σik, the subgrid heat-flux vector Qk and the source

term Π in the energy equation. These terms have to be modeled. For a DNS, where

all time- and length-scales are resolved, the subgrid terms are zero, implying that

φ = φ = φ̃. In the other limit, when the filter-width is so large that all fluctuations

are filtered out, a traditional RANS is recovered. For the present simulations the FSM

was based on the K − ε turbulence model in combination with the explicit algebraic

Reynolds stress model (EASM) by Rumsey et al. [11].
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We solved transport equation for the turbulent kinetic energy K and the turbulent

dissipation rate ε.

∂

∂t
(ρK) +

∂

∂xk

[
ρũkK −

(
µ

Re
+
µT
σK

)
∂K

∂xk

]
= ΠK , (2.6)

∂

∂t
(ρε) +

∂

∂xk

[
ρũkε−

(
µ

Re
+
µT
σε

)
∂ε

∂xk

]
= Πε . (2.7)

The turbulent viscosity µT is given as

µT = cµτTK , (2.8)

with cµ = 0.09. The additional constants that appear in the turbulent diffusion terms

are σK = 1.0 and σε = 1.3.

Source Terms

The source terms that appear in the energy and turbulence model equation include

a pressure dilatation term, terms involving the turbulent dissipation rate and the

subgrid mass-flux. It was shown by Sarkar et al. [12] that both pressure dilatation

and compressible dissipation are important in compressible turbulence. Therefore,

both effects are modelled according to Sarkar et al. [12], Sarkar [13] and Speziale [14]

by computing the source terms as

Π = (1− a2MT ) ρσikS̃ik +
(
1− a3M

2

T

)
ρ̄ε− (τ ik − p̄δik)

∂

∂xk

[
µT
σρ

∂

∂xi

(
1

ρ̄

)]
,

ΠK = − (1− a2MT ) ρσikS̃ik −
(
1− a3M

2

T

)
ρ̄ε−

(
∂p

∂xi
− ∂τik
∂xk

)
Cµ

ρσρ
τK

∂ρ

∂xi
, (2.9)

Πε = −Cε1ρ
1

τT
σik

(
∂ũi
∂xk

− 1

3
S̃jjδik

)
− Cε2fε2ρ

ε

τT
+ Cε3ρ̄Re

1

2

T

ε

τT
− 4

3
ρ̄εS̃jj , (2.10)
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with the constants σρ = 0.5, a2 = 0.15, a3 = 0.2, Cε1 = 1.44, Cε2 = 1.83, and

Cε3 = 0.001. Here fε2 is a wall-damping function, and ReT is the turbulent Reynolds

number

ReT =
ρK

µ
τT . (2.11)

To remove singularities at walls in the destruction term of the ε-equation, i.e., K = 0,

a damping function fε2 is used. Traditionally, this wall-damping function takes the

form

fε2(N) = 1− exp
(
−Re

√
0.1KN

)
, (2.12)

whereN is the wall-normal distance. In the EASMmodel implemented here, this wall-

damping function is the only term containing the wall-distance; the Reynolds stress

model automatically accounts for near-wall effects through the computation of α1/τ .

To be completely independent of the wall-distance, we employed another approach

which is based on suggestion by Durbin [15] for computing fε2. By computing fε2 as

fε2 =
1

max
[
1, CT√

ReT

] , (2.13)

it is assumed that the turbulent time scale is limited by the Kolmogorov time-scale.

The additional constant CT was calibrated by Sandberg [16].
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3. Flow Simulation Methodology

The Flow Simulation Methodology (FSM) is a hybrid turbulence model that was

designed to provide the proper amount of modeling based on the local and instanta-

neous physical resolution. The amount of modeling is determined by a contribution

function which locally and instantaneously compares the smallest relevant turbulent

length scales to the local grid resolution. The contribution function is designed such

that no modeling is provided in the DNS limit when the physical resolution is such

that all scales of motion are resolved. In the coarse-grid limit all scales of motion are

modeled and, the FSM reverts to a full RANS. In between these resolution limits, a

LES recovered where the subgrid stress is obtained from the underlying turbulence

model.

For the Flow Simulation Methodology, the turbulent stress tensor is multiplied by

the contribution function f(∆/Lk)

σik = f(∆/Lk)σ
R
ik . (3.1)

For the compressible extension,[17, 18] the source term in the energy equation and the

turbulent heat-flux vector have to be rescaled with the same contribution function:

Qk = f(∆/Lk)Q
R
k and Π = f(∆/Lk)Π

R. (3.2)

The term ∆ = [(∆z2 + ∆r2 + (r∆θ)2)/3]1/2 is the local grid-line spacing and Lk is

the Kolmogorov length-scale, Lk = (µ/ρRe)3/4 /ε1/4. For the present simulations, a

contribution function proposed by Speziale[17] was employed

f(∆/Lk) =


1− e

−β ∆

Lk




n

, (3.3)

where β and n are adjustable parameters. Following Speziale[17], n is set to unity

and β is set to a small value of the order of O(10−3). Other forms of the contribution

function and different choices of the length-scale are possible [19].
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4. Numerical Method
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Figure 4.1 Computational domain.

The compressible Navier-Stokes equations in cylindrical coordinates are solved

using sixth-order accurate split compact differences in the radial direction, fourth-

order accurate split differences in the streamwise direction, and a pseudospectral

discretization in the azimuthal direction. To preserve accuracy, the finite differences

were derived for non-equidistant grids. A state-of-the-art axis treatment is imple-

mented, exploiting parity conditions [20]. For the time advancement, a standard

fourth-order Runge-Kutta scheme is employed. The Reynolds stresses are also com-

puted with a high-order accurate scheme. Only the density gradients are computed

with a second-order accurate difference approximations for introducing numerical dis-

sipation in areas where shocks and expansion waves are present in the flow.

A sketch of the computational domain is shown in Figure 4.1. Only one half of the

entire flow was computed assuming symmetry of the flow. Dirichlet and Neumann

conditions, respectively were applied at the inflow and outflow boundaries. It was
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assumed that the approach flow was laminar. Therefore, the contribution function

was manually set to zero in the approach flow, such that the approach boundary

layer remained laminar. In addition, K was set to zero at the inflow boundary to be

consistent with the laminar approach-flow assumption.
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5. Flow Control Techniques

One of the many passive means for modifying the near wake flow and, hence, the

base pressure are vortex generators. In the present investigation vortex generators

are modeled, by introducing steady disturbances into the approach boundary layer,

just upstream of the base (center of disturbances at r = 1.05, z = −0.15) by a steady

volume force F̂ k
V F . The volume force was added to the right-hand-side (RHS) of the

radial momentum equation in Fourier space, such that a specific azimuthal mode

could be forced with a disturbance amplitude Adist. The disturbances can also be

periodic in time with a frequency ω for active flow control.

The volume force was computed as

F̂ k
V F = Adist sin(2πωt)

[
1− cos

(
(r − rb)π

re − rb

)][
1− cos

(
(z − zb)π

ze − zb

)]
, (5.1)

where k denotes the azimuthal mode that is being forced, and rb, re, zb and ze denote

the start and end points of the forcing “blob” in the radial and streamwise directions,

respectively.

Two different forcing mechanisms (steady or unsteady) for altering the near-wake

were investigated:

1. By emulating vortex generators using steady disturbances, longitudinal vortices

were introduced into the initial shear-layer, imposing symmetries on the flow

in the r − θ plane and reducing the strength of helical modes with low mode-

numbers.

2. Axisymmetric periodic perturbations were introduced, which, due to compress-

ibility effects, do not experience significant amplification in the streamwise di-

rection, but should reduce the energy transfer from the mean flow to the oblique

structures, thereby decreasing the growth of helical instability modes.
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We also investigated passive control of the supersonic wake using a central bleed

jet. The setup was similar to the experiments by Mathur and Dutton[21, 22] but the

Reynolds number was maintained at ReD = 100, 000. In the experiments, magnitude

of the bleed flow rate was quantified using a non-dimensional injection parameter,

I, defined as the bleed mass flow rate normalized by the product of the base area

and the product of freestream velocity and density. This definition of the injection

parameter does not account for the approach boundary-layer thickness and the bleed

flow momentum, both of which have been shown to affect the base pressure in a

manner analogous to basebleed. For the basebleed, a Dirichlet boundary condition

was employed for generating the bleed jet.
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6. Results

6.1 Natural Wake

We performed FSM simulations of transitional axisymmetric supersonic wakes at

ReD = 100, 000 and M = 2.46. The computational grid had 452 and 90 points in

the streamwise and the radial direction, respectively. We conducted simulations with

kh = 32 and 16 azimuthal Fourier modes (kh is the total number of Fourier modes

used in a simulation). As initial condition for the FSM simulations, the axisymmetric

RANS data from Sandberg [16] was used and the desired number of azimuthal Fourier

modes were added. We then added a pulse disturbance to the higher Fourier modes of

the density in order to initiate the three-dimensional motion. We first simulated the

uncontrolled flow and compared our FSM results with earlier DNS data by Sandberg

and Fasel [3, 4].

Figures 6.1a-d show sideviews of the instantaneous vorticity magnitude obtained

from simulations with kh = 16 and 32 azimuthal modes and different values of β.

a) DNS[3], kh = 128
Z

-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

r
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0.0
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b) FSM, kh = 32, β = 0.002

Z
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r
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c) FSM, kh = 32, β = 0.004
z

-1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

r
-1.0

0.0
1.0

d) FSM, kh = 16, β = 0.004

Figure 6.1 Sideviews of contours of instantaneous total vorticity magnitude for natural
uncontrolled wake
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Figure 6.2 Instantaneous iso-contours of Q = 0.05 from FSM calculations using kh =
32 & β = 0.002 (top) and kh = 16 & β = 0.004 (bottom); perspective view from
inflow towards outflow; base of body shaded grey.

For reference, DNS data of Sandberg and Fasel[3, 4] was included as well. The DNS

results display a broad range of scales. For the FSM calculations, the small scale

structures are modeled and therefore not visible and only some large-scale structures

(on the order of the shear layer thickness) are resolved. Also, the widening of the

wake as observed in the DNS for z > 5 is not captured. This could be attributed

to the coarse grid resolution which puts too much burden on the hybrid model in

the trailing wake region. However, within the recirculation region and the initial

shear layer the model contribution is very low, allowing for the formation of flow
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Figure 6.3 Pressure coefficient on base (top) and streamwise velocity along axis of
symmetry (bottom) for natural wake; DNS, kh = 128 (solid curve), axisymmetric
RANS (dotted curve), FSM, kh = 32, β = 0.002 (¦), FSM, kh = 32, β = 0.004 (4),
FSM, kh = 16, β = 0.004 (¤).

structures as seen in Figure 6.2. In this figure, the coherent structures were identified

by considering iso-surfaces of the second invariant of the velocity gradient tensor, the

“Q − criterion”[23]. In both cases, FSM qualitatively reproduces the flow features

observed in the DNS [3, 4]. Axisymmetric structures can be observed in the shear

layer close to the base. Additionally, a large number of longitudinal structures can be

seen within the recirculation region, which are a consequence of the helical structures.

Hairpin vortices can be observed downstream of the recompression region.

To allow for a more quantitative comparison of the different results, the time-

averaged streamwise velocity along the axis of symmetry and the time-averaged pres-

sure coefficient on the base are shown in Figure 6.3. The data for DNS and the

axisymmetric RANS calculation which are used as initial condition are included for

reference. In contrast to the axisymmetric RANS calculations, the pressure distribu-

tion obtained from the FSM computations is practically flat, and close to the pressure

distribution obtained from the DNS. When the number of azimuthal Fourier modes
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Figure 6.4 Time-averaged radial profiles of azimuthal Fourier modes of (ρu) obtained
from FSM simulation of natural wake using kh = 16 & β = 0.004; z = 2.5 (top),
z = 7 (bottom).

is increased from 16 to 32, almost the same mean base pressure profile as in the DNS

is obtained and the streamwise axis-velocity distribution differs only slightly. It can

also be seen that the dependence of the solution on the modelling parameter β is

not very strong. This implies that the model contribution for both β is satisfactory.

The value of β which leads to the best agreement with the DNS data is 0.004, which

is similar to the value that resulted in the best match for lower Reynolds number

calculations [24]. Results from FSM calculations with various azimuthal resolution

and β were qualitatively similar. Therefore, all simulations where we investigated
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passive and active flow control were carried out using FSM with 16 azimuthal modes

and β = 0.004.

The amplitude distributions of the azimuthal modes of the time-averaged stream-

wise velocity component for two different downstream locations were extracted from

the FSM simulation with kh = 16 and β = 0.004 and are shown in Figure 6.4.

One location (z = 2.5) is upstream of the recompression region, where considerable

reverse-flow occurs. The second location (z = 7) is within the far wake. The stream-

wise velocity component was chosen since it contains most of the energy. It can be

observed that the first and second azimuthal modes have high amplitudes at both

locations. At z = 2.5 mode k = 1 has the highest amplitude within the recirculation

region and mode k = 2 has the highest amplitude in the shear layer. At the far wake

location, mode k = 2 has the highest amplitude followed by mode k = 4. These

observations are consistent with our earlier DNS results [3, 4].

6.2 Controlled Wake

6.2.1 Steady Forcing

We investigated three cases with steady forcing: forcing either mode k = 2, 4, or

8, thereby generating 4, 8 or 16 counter-rotating longitudinal structures in the cir-

cumferential direction. Visualizations of instantaneous isosurfaces of Q = 0.05 that

illustrate the generation and evolution of coherent structures are shown in Figure

6.5. When steady forcing is applied to modes k = 2 and 4, an increased number of

hairpin vortices can be seen in the trailing wake, otherwise, the flow looks similar to

the unforced wake. When mode k = 8 is forced, longitudinal structures which are

generated at the forcing location by the steady forcing, can be observed.

To allow for an evaluation of the effect of steady forcing on the mean flow, time-

averaged radial profiles of several azimuthal Fourier modes of the streamwise velocity

component are shown in Figure 6.6. For example, when comparing the data obtained
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Figure 6.5 Instantaneous iso-contours of Q = 0.05 from FSM simulations with steady
forcing; perspective view from inflow towards outflow; forcing k = 2 (top left), forcing
k = 4 (top right), forcing k = 8 (bottom); base of body shaded grey.

from a case where mode k = 2 was forced with the unforced case (Figure 6.4), con-

siderable similarity with respect to the shape and magnitude of the mode amplitude

distribution can be observed for the upstream location z = 2.5. This may be due

to the fact that mode k = 2 is a dominant mode in the natural wake and therefore,

forcing this mode does not significantly alter the flow. However, the magnitude of

mode k = 2 is decreased in the shear layer compared to the natural wake. Looking

at the downstream location z = 7, the mode shape of the first azimuthal mode shows

a changed radial distribution while the mode shapes of all other higher azimuthal
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Figure 6.6 Time-averaged radial profiles of azimuthal Fourier modes of (ρu) obtained
from FSM simulations with steady forcing of modes k = 2, k = 4, and k = 8 (from
top to bottom); z = 2.5 (left), z = 7 (right).

modes resemble those found in the unforced case. However, the magnitude of modes

k = 2, k = 3 and k = 4 are reduced. For the case where mode k = 4 is forced a

significant peak in that mode is visible in the shear layer (at r = 0.8) at the upstream

location, z = 2.5. The amplitude of modes k = 1 and k = 2 are reduced compared to

the natural wake. At the downstream location z = 7 the amplitudes of modes k = 2

and k = 4 are reduced. When employing steady forcing of mode k = 8, a significant
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Figure 6.7 Pressure coefficient on base (top) and streamwise velocity along axis of
symmetry (bottom) from FSM simulations with steady forcing; natural wake (—),
forcing k = 2, (◦), forcing k = 4, (¤), forcing k = 8, (¦).

peak within the shear layer is visible at the upstream location in the forced mode. For

all cases with steady forcing, mode k = 2 is weakened. Steady forcing of modes k = 4

and k = 8 reduces the amplitude of mode k = 1 at z = 2.5. It should be noted here

that forcing of mode k = 8 in a simulation with only 16 azimuthal modes does not

allow for a detailed quantitative analysis of the flow response because the resolution

is insufficient. These results should therefore, be considered to be of a qualitative

nature only. We will repeat these cases with a larger number of azimuthal modes.

The time-averaged pressure coefficient along the base and the streamwise velocity

distribution along the axis are shown in figure 6.7. For comparison, data for the

uncontrolled flow was also included. When forcing mode k = 2, the recirculation

length is slightly increased, resulting in a small pressure increase. Forcing of the

higher azimuthal modes k = 4 and 8 shortens the recirculation length and decreases

the base pressure. This is in agreement with experiments at an even higher Reynolds

number by Bourdon and Dutton,[6] who did not detect any significant base pressure

increase when generating longitudinal vortices by means of tabs on the axisymmetric
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Figure 6.8 Instantaneous iso-contours ofQ = 0.05 from FSM simulations with periodic
forcing; ω = 1.0 (top left), ω = 1.5 (top right), ω = 2.0 (bottom left) and ω = 2.5
(bottom right); perspective view from inflow towards outflow; base of body shaded
grey.

body.

6.2.2 Periodic Forcing

We also investigated periodic axisymmetric forcing of mode k = 0 for frequencies in

the range ω = 0.4 − 2.5. Instantaneous flow visualizations are shown in Figure 6.8.

Time-periodic forcing is seen to result in the formation of axisymmetric structures in

the shear layer just downstream of the base. When the axisymmetric mode was forced

with frequencies ω = 1.0 and ω = 2.0, the flow structures far downstream from the
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region of high activity for cases with periodic forcing.
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base resemble those of the unforced flow. But when forcing the axisymmetric mode

with frequencies ω = 1.5 and ω = 2.5, the hairpin vortices that are present in the

trailing wake for the unforced flow disappear. We suspect that for certain frequencies

(here, ω = 1.5 and ω = 2.5), the energy otherwise transferred to the helical structures

is transferred to the axisymmetric mode, which does not exhibit significant spatial

growth. The formation of hairpin vortices is suppressed as the helical modes are less

energetic in these cases.

In order to identify the dominant frequencies in the flow, the azimuthal Fourier

modes of density were Fourier transformed in time. Figure 6.9 shows the amplitudes

of selected azimuthal modes versus the Strouhal number based on diameter for all

periodic forcing cases. The dominant peaks in the spectrum are clearly related to the

forcing (note that the non-dimensionalization of all quantities were performed with

R as reference length whereas the Strouhal number is based on the diameter D). The

spectra also show higher harmonics of the forcing frequencies.

In order to evaluate the effect of periodic forcing on the mean flow, time-averaged

quantities are scrutinized. The time-averaged radial amplitude distributions of several

azimuthal Fourier modes are shown in Figure 6.10 for selected periodic forcing cases.

When the axisymmetric mode k = 0 is forced with ω = 1.0. Modes k = 1 and k = 2

are suppressed at the upstream location z = 2.5 compared to the natural wake. At

the downstream location z = 7, the mode k = 2 and k = 4 amplitudes are decreased

while mode k = 1 shows a slightly higher amplitude compared to the natural wake.

When mode k = 0 is forced with ω = 1.5 the mode k = 1 and k = 2 amplitudes

are again reduced in amplitude at z = 2.5 compared to the natural wake. But an

interesting peak is obtained in mode k = 16 in the shear layer indicating a higher

energy transfer to the unresolved scales. When the axisymmetric mode is forced with

ω = 2.0, at z = 2.5 only mode k = 1 experiences a slight amplitude reduction whereas

mode k = 3 shows an increase in amplitude at z = 7. When mode k = 0 is forced

with ω = 2.5 the mode k = 1 and k = 2 amplitudes are reduced at z = 2.5. Yet,
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Figure 6.10 Time-averaged radial profiles of azimuthal Fourier modes of (ρu) obtained
from FSM simulations with periodic forcing; ω = 1.0, ω = 1.5, ω = 2.0, and ω = 2.5
(from top to bottom); z = 2.5 (left), z = 7 (right).
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Figure 6.11 Pressure coefficient on base (top) and streamwise velocity along axis of
symmetry (bottom) from FSM simulations with periodic forcing; unforced case (—),
ω = 0.4, (◦), ω = 1.0, (¤), ω = 1.5, (¦), ω = 2.0, (4), ω = 2.5, (/).

again, mode k = 16 displays a peak in the shear layer as for the case with frequency

ω = 1.5. At the downstream location z = 7 all low wavenumber modes are reduced

in amplitude compared to the natural wake.

The time-averaged streamwise velocity along the axis and the mean pressure co-

efficient along the base are compared in Figure 6.11. Forcing the axisymmetric mode

with a low frequency of ω = 0.4 results in a decrease in the recirculation length and

base pressure. But as the frequency is increased to ω = 1.0, both the base pressure

and recirculation length increase. In fact, for ω = 1.5, the base pressure is larger

and recirculation length is longer than for the uncontrolled flow. When the frequency

is further increased to ω = 2.0 both base pressure and recirculation length are re-

duced compared to the natural wake. A further increase of the forcing frequency

to ω = 2.5 results in a further increase of both the base pressure and recirculation

length. Clearly, the results are strongly dependent on the forcing frequency.
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6.2.3 Basebleed

We also investigated base-bleed for various bleed flow rates. Sideviews of the in-

stantaneous vorticity magnitude for three cases are shown in Figures 6.12a-c. The

three cases belong to three distinct basebleed operating regimes. The base pressure

increases fairly linearly with the bleed rate at low values of I (regime 1). A peak in

the base pressure occurs at an intermediate value of I. As the bleed rate is increased

past the optimum value, the base pressure decreases (regime 2) until it reaches a

relative minimum. A further increase in the bleed flow leads to the onset of power-on

conditions (regime 3) when the bleed flow becomes supersonic. Here, for the highest

injection parameter value of I = 0.0226 investigated the bleed jet is still subsonic. As

the injection parameter is increased the shear layer angle becomes flatter, the base

corner expansion weakens, the wake widens, and the recompression shocks become

weaker. Flow structures for three selected basebleed cases are shown in Figure 6.13.

Time-averaged radial amplitude distributions of several azimuthal Fourier modes

of the streamwise velocity component are shown in Figure 6.14. For the low value of

the injection parameter, I = 0.0038, compared to the natural wake, at z = 2.5, the

mode-shape of the first azimuthal mode shows a changed radial distribution, and it

has the largest amplitude of all the azimuthal modes at this location. Nevertheless,

the amplitude of all modes are reduced at this location compared to the natural

wake. Especially, the amplitude of mode k = 2 is suppressed in the shear layer. At

the downstream location z = 7 modes k = 2, k = 4 and k = 6 are weakened. For

the optimal injection parameter, I = 0.0113, mode k = 1 is considerably weakened

by the bleed jet at the upstream location z = 2.5 and modes k = 1 and k = 2 are

suppressed in the shear layer. All modes are suppressed at the downstream location

z = 7 compared to the natural flow, indicating reduced growth rates in the shear layer.

For the highest value of the injection parameter, I = 0.0226, although at z = 2.5 the

mode k = 1 and k = 2 amplitudes seem to be reduced, further downstream at z = 7,
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Figure 6.12 Sideviews of contours of instantaneous total vorticity for basebleed cases
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Figure 6.13 Instantaneous iso-contours of Q = 0.1 (green) and Q = 0.05 (blue) from
FSM simulations with basebleed; I = 0.0038, I = 0.0113, I = 0.0226 (from top to
bottom); perspective view with flow from left to right.
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Figure 6.14 Time-averaged radial profiles of azimuthal Fourier modes of (ρu) obtained
from FSM calculation of wake with central bleed jet; I = 0.0038, I = 0.0113, I =
0.0226 (from top to bottom); z = 2.5 (left) and z = 7 (right).



34

0 0.2 0.4 0.6 0.8 1
r

-0.07

-0.06

-0.05

-0.04

C
p

0 2 4 6 8 10
z

-0.2

0

0.2

0.4

0.6

U
ax

is

Figure 6.15 Pressure coefficient on base (top) and streamwise velocity along axis of
symmetry (bottom) from FSM of basebleed; unforced case (—), I = 0.0038, (◦),
I = 0.0075, (¤), I = 0.0113, (¦), I = 0.0148, (4), I = 0.0226, (/).

modes k = 1, k = 3, k = 4 and k = 6 show high amplitudes compared to the natural

wake indicating large disturbance amplification in the shear layer.

Radial distributions of the time-averaged pressure coefficient along the base and

centerline distribution of the streamwise velocity for the wake with central bleed jet

are shown in figure 6.15. As the injection parameter is increased the base pressure

and recirculation length increases almost linearly. For I = 0.0113 the bleed flow

provides most of the fluid required for shear-layer entrainment and the maximum

base pressure is obtained. In the experiments of Mathur and Dutton[21, 22] peak

performance was obtained for a higher value of the injection parameter. This can

probably be attributed to a larger entrainment of fluid by the shear layer at the

higher experimental Reynolds number.
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7. Summary

We performed FSM simulations of transitional axisymmetric supersonic wakes atM =

2.46 and ReD = 100, 000. Active and passive flow control techniques were applied

and it was demonstrated that the base-pressure can be increased by flow control. The

effect of these flow control techniques on the flow structures and the mean flow was

investigated. Consistent with the experiments at higher Reynolds numbers, applying

steady forcing of higher azimuthal modes and generating longitudinal structures in

the shear layer did not succeed in increasing the base pressure, except for a slight

increase in pressure and recirculation length when steady forcing is applied to mode

k = 2.

When applying periodic forcing of the axisymmetric mode, mode k = 1 is sup-

pressed in the recirculation region and the amplitude of mode k = 2 is reduced in

the shear layer. Forcing the axisymmetric mode at certain frequencies resulted in

a base pressure increase and a longer recirculation length. In our simulations, a

pressure increase was first observed for a non-dimensional frequency ω = 1.5 and

then for ω = 2.5. This indicates an interesting trend and a strong dependence of the

performance on the forcing frequency, which will be further investigated in the future.

We also investigated passive wake control using basebleed. In our preliminary

simulations, the largest drag reduction (base pressure increase) was obtained for an

injection parameter of I = 0.0113. This value is lower than the optimal injection

parameter observed in the experiments. We attributed this to the higher experimental

Reynolds number which leads to a stronger entrainment by the shear layer.
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